ECL-ON 9 D CLARK ACCE ONE

PARL SENERAL

REFERENCE .

- A. NFPA 9 A $\operatorname{Asis}_{t}^{11}$ on of A r Cond on ng nd $\operatorname{en}_{t}^{1}$ on yse s.
- MACNA Lo Press re D caconsa; caon and rds. B.
- C.
- D.
- Le ge R ad D pers for se n o e Conaço ysaç s. E.

BM LAL

•

- \mathbf{r}_{i} nder pros ons of econ Α.
- B. Prod $c_{q}D = c_{t}$ For e ch prod c_{q} sed n k_{t} s pro $e_{c_{t}}$ prode c c_{t} og d c_{t} nd ns c_{t}^{n} on nsa, cons.
- C. p es Norreq red.

PARL PROD CH

BALANC NO DAMPER

- A. Pro def corry n f corred, nc ng d pers de cere or exceeds MACNA sound rds, nd s nd c ad hop f r c ad nc ng d pers re NQL ccepert e.
 B. For record r d cohe ghas "or ess, pro de s ng e de nc ng d per da de fo o ng
- fe **r**es.

n

. Perfor nce spec f c \neg ons re sed on \aleph s n MD \aleph . Owher prod c \neg s \neg sfy ng \neg he spec f c \neg ons re ccep \neg t e.

CONL ROL DAMPER .

- A. Exceptor o door r contro d pers, pro de contro d pers de ters, de ters,

 - Fr e g ge, g n zed see ch nne h corner, r ces. B de " x dh, opposed de, g ge g n zed see . Ax es "hex x e g n zed see sh fe sec red ghave he de non sec, non corros e, 3. o ded syn here e r ngs.
 - Conço h f q_t "x _d e q_r , g' n zed save conço sh f q_t h_t o q_t o rd s ppor q_t e r ng. Ac q_t q_r Br c eq_t Fr e o nad, g' n zed save. ¥
 - e's None. .
 - Le ge $\aleph \not\in M x$ 'e ge $r \not\in s sh$ ' norexceed he fo ong 'es hen $\not\in s \not\in d \not= t$ "Therese red fferen r per AMCA P 'c r on ₹.
 - D per Le ge R @

- Perfor ne spec f c ons re sed on R s n CBD. Other prod co s offyng the spec f c *n*ons re ccep*n* 'e.

. A.K. TN.NODE .CE

- A. M'a de de ce da rfo' des gned n dae shorad ens on, sage consa caon da f xed
- B. Intere norposs e a consa crazes, ends, nde o s dar d sof noriess dan . a es dae da of he d con cener ne nd here sq re hro or d s or or ered e o s re sed, pro de r fo' q_t rn ng nes. Do no pro de q_t rn ng nes n de q_t hen hood exh saysa q_t . C. \perp rn ng nes sh'' e ns q_t ed n ccord nce da MACNA cons a_t caon sa nd rds.

FLEX BLE D C CONNECLON

- A. F r c e n ccord nce h MACNA Lo Press re D ce Conse ce on end rds, nd s nd c 📢.
- B. NFPA 9 A, D's sad, fre reard naneoprene co ad o en g ss f er f r c, n oz per sq. yd., pprox a y 3" de, cr ped na ea edg ng sa p.
 C. ny sheed n . " a c , . s per sq. fa, dB agn on n a , dens ୶ 3
- [⊥]zr nge.

.9 D C ACCE DOON

- A. F r c e n ccord nce la MACNA Lo Press re D c Conse c n n nd rds, nd s nd c 📢.

 - nd c ad.
 Fr e g geg n zed see a fo g s e se.
 Door ie o e ape a oc s nd s fear ch n, g geg n zed see, s ng e s n for non ns ad d ca, do e s n a "a c f erg ss ns on for ns ad d ca.
 Loc s sh ape one oc for doors " nd s er a o c s for doors rger a n ".
 M x Le ge is as Do e s n door, CFM F s ng e s n door, CFM F.
 Perfor nce spec f c ons re sed on is s n ADC nd ADC. N or or other prod cas as for no set of cons re second e second e second cas as a second cas as a second cas as a second cas a second cas as a second cas as a second cas a second cas as a second cas as a second cas as a second cas a second cas as a second cas as a second cas a second cas as a second cas a second cas as a second cas a second

 - prod cas s asfy ng dae spec f c aons re ccepa 'e.
- B. Access doors h_i sheet e_i scre f seens re not ccept e.

PANL 3 EXEC I.ON

3. AN LALLAL ON

- A. $\operatorname{Ais}_{t}^{\mathbb{N}}$ ccessor es n ccord nce A_{t} n f ce_t rers nsat ce_tons.
- B. Pro defred pers, co n_{e} on fre nds o ed pers, nds o ed pers e_{to} ons nd c ad, here d c_a nd o e_a p ss hro gh f re r ad co ponen a_a , nd here req red y hor a hor a h ng $\begin{bmatrix} 1 & 1 \\ -3 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ -3 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$

nn n

- E. Pro defex e connectors, ed ey d centro eq p entind can ssoc ed dafns nd or or zed eq p entit Arhnder n et dafn od es dat re nærn y so eddo no req re tex e connectors. Co er connectors e ed nd h gh press refns da ny sheet he d n p ce da et se ps.
- F. Pro de d ca ccess doors for nspecaon, c e n ng nd nan nce ser ce aconato d pers, c dr fad pers, f re d pers, co n aon f re nd s o e d pers, s o e d pers, s o e deaccars, e eca c he ars, EMC sensors nd de ces, nd s nd c ad. Access door s ze sh e are sa the da of the d ca

END OF ECL.

С