PRACTICE ADVANCED STANDING EXAM

1. Find the x and y-intercepts for the following:

$$
x \text {-int: } \quad \begin{array}{lllll}
& x^{2} & 1000 & y^{3} & \\
& & & & y \text {-int: }
\end{array}
$$

2. Find the equation of the line (in $y \quad m x \quad b$ form) that passes through the following points: $\quad 2,1$ and 4,5
3. Give the domain of the following functions:
$f x \quad \frac{x 9}{x^{2} \times 12}$
$\begin{array}{ll}g x & \sqrt{20040 x}\end{array}$
4. Graph the following piecewise function: $f x$

$$
\begin{array}{cccc}
x^{2} & \text { if } & x & 2 \\
\frac{3}{2} x & 4 & \text { if } & x
\end{array}
$$

(Hint: It may help to graph the pieces separately first.)

5. Find the coordinates of the vertex:

$$
\begin{array}{lllllllll}
f x & 4 x & 3^{2} & 5 & f x & 5 x^{2} & 10 x & 7
\end{array}
$$

6. Divide the following polynomials and find a Quotient and a Remainder:
7. Identify the vertical and horizontal asymptotes:

$f(x) \quad$| $x \quad 3$ |
| :--- |
| $x^{2} \quad 4$ |

() $\frac{2^{2} 3}{} \begin{aligned} & 2 \quad 12 \quad 35\end{aligned}$
8. Solve the following Inequality:

$$
\frac{2}{x^{2}} \quad \frac{1}{x 1}
$$

9. Perform the indicated function compositions using the following formulas:

$$
\begin{array}{lllllll}
& f(x) \quad x \quad 1 & g(x) & x^{2} \quad 5 \\
g & f(x) & \\
g & f & f(0)
\end{array}
$$

10. Find the inverse of the following function:
[Be sure to indicate if there are any restrictions on the domain of the inverse.]

$$
f(x) \quad \sqrt{x \quad 2}
$$

$f^{1}(x)$
Domain:
11. Solve the following equations:
$2^{x 2} \quad 32$
$\ln x \quad 4 \quad 2$

Solve for x :
12. $\begin{array}{lllll}\log x & 3 & \log x & 1\end{array}$
16.

Write an equation that describes the above graph:
[Note: The angles are in radians and there is no phase shift.]
17. Find the exact value of the given trig function:
(Note: The angles are measured in radians.)
$\cos \cos ^{1} \frac{3}{2}$
$\cos ^{1} \cos \frac{4}{3}$
$\cos \tan ^{1} \quad \frac{2}{3}$

Find the exact value of the following:
19. $\quad \sin \cos ^{1} \frac{4}{5} \quad \tan ^{1} \frac{2}{3}$

Use the following formulas to help answer the question above:
Angle Sum \& Difference Formulas:

```
sin}A\quadB\quad\operatorname{sin}A\operatorname{cos}B\quad\operatorname{cos}A\operatorname{sin}
A B A B
```



```
cos A B 尓 A cosB 部 A sin B
```

20. Find all solutions in the interval $0 \quad 2$:
[Note: The angles are measured in radians.]

$$
2 \sin ^{2} \quad 5 \sin \quad 30
$$

