No outside resources are permitted including: notes, textbooks, cell phones or any other electronics. Show all work. Solutions without explanations will receive no points. Simplify your answers. Circle your final answers.

1. Calculate the given quantities using the following vectors: and
a.
b. and
c. A unit vector going in the same direction as
d.
e.
f. Fit- C036 343.37 Tm[()]9Q[()]9Qt9 142.036 34ET772.0526łTETBl 00184.74449 TET EM C 4 T1 $001360 . c 58$.
2. Given the function
3. Find and classify all the Critical Points of the function
4. Find the Absolute M ax and Absolute M in of the function on the triangular region in the -plane bounded by the points and and
5. Find the Absolute M ax and Absolute M in of the function on the disk
6. Evaluate the following integral by reversing the order of integration:
7. Find the mass of a thin metal plate that occupies a region D that is bounded by the parabola and the coordinate axes in the first quadrant if the density of the plate varies according to the density function
8. Find the volume that lies inside the cylinder and above the -plane and beneath the parabaloid by using cylindrical coordinates.
9. Show that the volume of the upper half of a sphere of radius is by using spherical coordinates.
10. Evaluate the following integral: by making the transformations: and
11. Evaluate the following integral:
over the triangular region that has vertices at the points and and by making the transformations: and
(Note: You show the appropriate work for a change-of-variable problem. You will not receive any credit if you attempt to leave the integral in its original -form.)
12. Evaluate the following line integrals by parameterizing the curves:
where is the arc of the parabola from to
where is the arc of the parabola to
where
and is given by
for
13. Use the Fundamental Theorem of Line Integrals to evaluate the following integral:
where is the line segment parameterized by the function
for
14.
15.

where
and
and is the triangle with vertices at when viewed from above.

