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Abstract. Beginning in the late 1980s, white-band disease nearly eliminated the stag-
horn coralAcropora cervicornis from reefs in the central shelf lagoon of Belize. The lettuce
coralAgaricia tenuifolia replacedAcropora cervicornis in the early 1990s, but anomalously
high water temperatures in 1998 caused severe bleaching and catastrophic mortality of
Agaricia tenuifolia. The short-lived transition in dominance fromAcropora cervicornis to
Agaricia tenuifolia left an unambiguous signature in the fossil record of these uncemented
lagoonal reefs. Analysis of 38 cores, extracted from 22 sampling stations in a 375-km2 area
of the central lagoon, showed thatAcropora cervicornis dominated continuously for at least
3000 years prior to the recent events.Agaricia tenuifolia occasionally grew in small patches,
but no coral-to-coral replacement sequence occurred over the entire area until the late
1980s. Within a decade, the scale of species turnover increased from tens of square meters
or less to hundreds of square kilometers or more. This unprecedented increase in the scale
of turnover events is rooted in the accelerating pace of ecological change on coral reefs at
the regional level.
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INTRODUCTION

Coral reefs of the Caribbean region (the western At-
lantic, including Florida and the Bahamas) have
changed markedly since the late 1970s (Ginsburg 1994,
Hughes 1994, McClanahan and Muthiga 1998). The
essential features of this change are that (1) coral mor-
tality from natural and, possibly, human causes has
reduced coral cover and opened space on most reefs,
(2) herbivory has been reduced by the 1983–1984 mass
mortality of the sea urchinDiadema antillarum and, in
at least some places, by overfishing of parrotfish (Scar-
idae) and surgeonfish (Acanthuridae), and (3) the in-
crease in available space relative to the potential for
herbivory has resulted in greatly increased cover and
biomass of fleshy and filamentous macroalgae, espe-
cially forms that are unpalatable to herbivorous fishes
(Knowlton 1992, Hughes 1994, Szmant 1997, Miller
et al. 1999, Aronson and Precht 2000, 2001a, Williams
and Polunin 2001). The increase in macroalgae has in
turn limited coral recruitment and the recovery of coral
populations, and has obscured zonation patterns that
were formerly typical of Caribbean reefs (Jackson
1991, Edmunds and Carpenter 2001). If these recent
decadal-scale changes are unique on a centennial to
millennial scale, then the popular suspicion that hu-
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mans are important agents of reef degradation could
be well founded. Conversely, if changes of this sort
occurred in the past, then human interference could be
merely a minor factor contributing to the present sit-
uation.

Until the late 1970s, three framework-building coral
species displayed a zonation pattern that was common
throughout the region (Goreau 1959, Goreau and Go-
reau 1973, Graus and Macintyre 1989). Thickly branch-
ing elkhorn coral,Acropora palmata, dominated sub-
stratum cover from the reef crest down to 5 m depth
on the fore reef under all but the most energetic wave
conditions. The more thinly branching staghorn coral,
Acropora cervicornis, dominated intermediate depths
(5–25 m) on wave-exposed fore reefs.Acropora cer-
vicornis ranged into shallower habitats on protected
fore reefs and also occurred in back-reef and lagoonal
habitats (Geister 1977, Ru¨tzler and Macintyre 1982,
Hubbard 1988). The third primary framework builder
of Caribbean reefs, theMontastraea annularis species
complex, consists of at least three sibling species
(Knowlton et al. 1992). Massive colonies ofMontas-
traea spp. were (and remain) common in a variety of
reef habitats, exhibiting interspecific zonation as well
as intraspecific changes in morphology along depth
gradients (Goreau 1959, Graus and Macintyre 1982,
Knowlton et al. 1992).

The overall zonation pattern has largely disappeared
because theAcropora spp. have been killed and re-
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FIG. 1. Map of the central shelf lagoon of the Belizean Barrier Reef, showing the rhomboid shoals and coring stations.
Each station is a length of reef, meters to several tens of meters long, within which one or more cores were extracted. The
map is based on a Landsat 5 TM image (18 September 1987) supplied by G. Madejski, NASA Goddard Space Institute,
Greenbelt, Maryland, USA.
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FIG. 2. Photographs from the rhomboid shoals in Belize. (A) Stand ofAcropora cervicornis, the species that dominated
at 2–15 m water depth until the late 1980s. (B) Closeup of a branch ofAcropora cervicornis infected with white-band disease.
The diseased, white segments along the branch in the foreground, left and center, are characterized by dead skeleton and
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FIG. 3. Representative cores. Gray fill represents sandy mud, and wavy horizontal lines demarcate the upper limit of
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eraging does not substantially affect the outcome of
this analysis.)

The probability of seeing the observed pattern of
alleged failures of preservation over all the stations is
the one-tailed, cumulative binomial probability of three
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locene record, having been stabilized in sandy mud.
Considering the rapid rate of burial, the high preser-
vation potential ofAgaricia in the central lagoon, and
the fact that the paleoslopes sampled were less than the
critical angle of repose forAgaricia tenuifolia, it is
unlikely that an earlier, large-scale,Acropora-to-Agar-
icia replacement sequence would have gone unrecorded
or undetected.

Agaricia tenuifolia possesses physiological and life
history characteristics that favored its spread, by rapid
growth and intensive local recruitment, once the in-
cumbent populations ofAcropora cervicornis had been
removed by WBD.Agaricia tenuifolia tolerates the
wide range of light and flow conditions experienced in
the central lagoon (Helmuth et al. 1997a, b), and it
grew rapidly there (Shyka and Sebens 2000). Caribbean
agariciids reproduce by brooding internally fertilized
planula larvae (Fadlallah 1983, Richmond and Hunter
1990, Richmond 1997), and
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Sargent (1994) noted short-term volatility in popula-
tions of Acropora cervicornis within reefs along the
Florida Reef Tract during the 20th century. We suggest
that the recent regional decline ofAcropora cervicornis
(and other corals) has eliminated much of this small-
scale variation by limiting the scope for turnover events
at small spatial and temporal scales.

The loss ofAcropora cervicornis (as well asAcro-
pora palmata), its limited prospects for rapid recovery
in a small ocean basin now beset by disturbances and
stresses, and the success of brooding corals as replace-
ments (Sammarco 1985, Smith 1992, Connell 1997)
lead us to concur with predictions that brooders, par-
ticularly in the families Poritidae and Agariciidae, will
become increasingly dominant components of coral as-
semblages on Caribbean reefs (Kojis and Quinn 1994;
Aronson and Precht 2001b). Regardless of their life
history strategies, however, corals will not occupy the
majority of space if severe disturbances and stresses
continue at their present levels.
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